ML IEEE

MAP Estimation With Bernoulli Randomness, and Its Application to Text Analysis and Recommender Systems

April 26, 2023
MAP estimation plays an important role in many probabilistic models. However, in many cases, the MAP problem is non-convex and intractable. In this work, we propose a novel algorithm, called BOPE, which uses Bernoulli randomness for Online Maximum a Posteriori Estimation. We show that BOPE has a fast convergence rate. In particular, BOPE implicitly employs a prior which plays as regularization. Such a prior is different from the one of the MAP problem and will be vanishing as BOPE does more iterations. This property of BOPE is significant and enables to reduce severe overfitting for probabilistic models in ill-posed cases, including short text, sparse data, and noisy data. We validate the practical efficiency of BOPE in two contexts: text analysis and recommender systems. Both contexts show the superior of BOPE over the baselines.

Overall

4 minutes

Xuan Bui, Hieu Vu, Oanh Nguyen, Khoat Than

IEEE Access

Share Article

Related publications

ML NeurIPS Top Tier
October 4, 2023

Van-Anh Nguyen, Trung Le, Anh Tuan Bui, Thanh-Toan Do, Dinh Phung

ML NeurIPS Top Tier
October 4, 2023

Van-Anh Nguyen, Tung-Long Vuong, Hoang Phan, Thanh-Toan Do, Dinh Phung, Trung Le

ML NeurIPS Top Tier
October 4, 2023

Cuong Pham, Cuong C. Nguyen, Trung Le, Dinh Phung, Gustavo Carneiro, Thanh-Toan Do

ML ICAIF Top Tier
October 1, 2023

Anh Tong, Thanh Nguyen-Tang, Dongeun Lee, Toan Tran, Jaesik Choi