ML ICCV

Reducing Training Time in Cross-Silo Federated Learning using Multigraph Topology

July 31, 2023

Federated learning is an active research topic since it enables several participants to jointly train a model without sharing local data. Currently, cross-silo federated learning is a popular training setting that utilizes a few hundred reliable data silos with high-speed access links to training a model. While this approach has been widely applied in real-world scenarios, designing a robust topology to reduce the training time remains an open problem. In this paper, we present a new multigraph topology for cross-silo federated learning. We first construct the multigraph using the overlay graph. We then parse this multigraph into different simple graphs with isolated nodes. The existence of isolated nodes allows us to perform model aggregation without waiting for other nodes, hence effectively reducing the training time. Intensive experiments on three public datasets show that our proposed method significantly reduces the training time compared with recent state-of-the-art topologies while maintaining the accuracy of the learned model. Our code can be found at https://github.com/aioz-ai/MultigraphFL

Overall

5 minutes

Tuong Do, Binh Nguyen, Vuong Pham, Toan Tran, Erman Tjiputra, Quang Tran, Anh Nguyen

ICCV 2023

Share Article

Related publications

ML NeurIPS Top Tier
October 4, 2023

Van-Anh Nguyen, Trung Le, Anh Tuan Bui, Thanh-Toan Do, Dinh Phung

ML NeurIPS Top Tier
October 4, 2023

Van-Anh Nguyen, Tung-Long Vuong, Hoang Phan, Thanh-Toan Do, Dinh Phung, Trung Le

ML NeurIPS Top Tier
October 4, 2023

Cuong Pham, Cuong C. Nguyen, Trung Le, Dinh Phung, Gustavo Carneiro, Thanh-Toan Do

ML ICAIF Top Tier
October 1, 2023

Anh Tong, Thanh Nguyen-Tang, Dongeun Lee, Toan Tran, Jaesik Choi